Soal
Jika diketahui a + b + c = 8 dan a2 + b2 + c2 = 756 serta a2 = bc
Tentukan nilai a !
Tuesday, September 30, 2014
Sunday, September 28, 2014
PENURUNAN RUMUS QUADRATIC ATAU YANG DIKENAL RUMUS ABC
Rumus quadratic atau yang dikenal dengan rumus abc dapat diperoleh dari cara melengkapkan kuadrat sempurna pada bentuk umum persamaan kuadrat
Berikut proses penurunan rumus quadratic
Bentuk diatas itulah rumus quadratic atau yang dikenal dengan rumus abc
Thursday, September 25, 2014
LATIHAN 2 PERSAMAAN KUADRAT
Latihan soal persamaan kuadrat lanjutan, soal diambil dari buku kurikulum 2013 kelas 8 , hanya soal soal tertentu saja yang di ambil ^^
LATIHAN 1 PERSAMAAN KUADRAT
Latihan soal persamaan kuadrat , soal diambil dari buku kurikulum 2013 kelas 8. Tidak semua soal ditampilkan, hanya soal soal terpilih saja ^^
Wednesday, September 24, 2014
PERSAMAAN KUADRAT (JENIS - JENIS AKAR)
Jenis-jenis akar
Akar-akar persamaan kuadrat yang dimaksud disini adalah solusi atau penyelesaian dari persamaan kuadrat yaitu nilai x yang memenuhi persamaan kuadrat.
Tanpa menenetukan terlebih dahulu nilai nilai akar persamaan kuadrat, kita dapat menentukan jnilaienis akar persaman kuadrat melalui nilai diskriminan yang telah dipelajari dahulu.
Jika D > 0 maka persamaan kuadrat mempunya dua akar real dan berlainan
Jika D = 0 maka persamaan kuadrat mempunya dua akar real yang kembar atau sama
Jika D < 0 maka persamaan kuadrat mempunya akar tidak real atau imajiner
Contoh:
Tanpa menentukan akar-akar persamaan terlebih dahulu, tentukan jenis akar persamaan kuadrat x2 -2x - 3 = 0
Jawab
Telebih dahulu tentukan nilai a , b dan c dulu.
a = 1 (koefisien pada x2)
b = -2 (koefisien pada x)
c = -3 (konstanta)
selanjutnya kita cari nilai diskriminannya
D = b2 - 4ac
D = (-2)2 - 4(1)(-3)
D = 4 + 12
D = 16
Karena D > 0 maka persamaan kuadrat tersebut mempunya dua akar real dan berlainan
Monday, September 22, 2014
BRILLIANT COMPETITION 7 BPK PENABUR (MTK)
Silahkan download soal Brilliant Competition 7 MTK BPK penabur berikut ini
Brilliant Competition 7 MTK <download>
Brilliant Competition 7 MTK <download>
Saturday, September 20, 2014
PERSAMAAN KUADRAT (BENTUK UMUM DAN NILAI DISKRIMINAN)
Persamaan Kuadrat
Persamaan kuadrat merupakan bentuk aljabar yang ditandai dengan tanda sama dengan serta variabelnya berpangkat paling tinggi dua.Bentuk umum persamaan kuadrat
ax2 + bx + c = 0 dengan nilai a tidak sama dengan 0 , b dan c anggota bilangan real
Contoh:
x2 + 3x + 2 = 0
2x2 - x - 3 = 0
Nilai Diskriminan
Nilai diskriminan disimbolkan D yang dirumuskan
D = b2 - 4ac
Contoh :
Tentukan nilai diskriminan persamaan kuadrat 3x2 + 4x - 2 = 0 !
Jawab
kita tentukan dulu nilai a , b dan c nya terlebih dahulu
a = 3
b = 4
c = -2
selanjutnya masukan nilai-nilai tersebut ke rumus diskriminan
D = b2 - 4ac
D = (4)2 - 4(3)(-2)
D = 16 + 24
D = 40
Jadi nilai diskriminannya 40
Thursday, September 18, 2014
PEMBUKTIAN RUMUS KERUCUT TERPANCUNG
Berikut pembuktian rumus kerucut terpancung yang terdiri atas rumus selimut kerucut terpancung dan volume kerucut terpancung.
'
Sunday, September 14, 2014
STATISTIKA SEDERHANA
Rinngkasan mengenai statistika sederhana , menyangkut ukuran pemusatan yaitu nilai rata rata yang dikenal dengan sebutan mean, nilai tengah atau dikenal median serta nilai yang sering muncul atau modus
Saturday, September 13, 2014
Friday, September 12, 2014
SOAL DARI PEMBACA (SISTEM PERSAMAAN LINEAR)
Seorang pedagang beras,mencampur tiga jenis beras. Campuran beras pertama terdiri atas 1 kg jenis A, 2 kg jenis B, dan 3 kg jenis C dijual dengan harga Rp 19, 500,- Campuran beras kedua terdiri dari 2 kg jenis A dan 3 kg jenis B dijual dengan harga Rp 19.000,- Campuran beras ketiga terdiri atas 1 kg jenis A dan 1 kg jenis C dijual dengan harga Rp 6.250,-. Harga beras jenis mana yang paling mahal?
Monday, September 8, 2014
TEOREMA VIETA
Teorema Vieta dipakai untuk mencari hasil jumlah akar akar persamaan ataupun hasil kali akar akar persamaan polinomial
Thursday, September 4, 2014
METEODE PENYELESAIAN SISTEM PERSAMAAN LINEAR DUA VARIABEL
Tentukan penyelesaian dari sistem persamaan linear berikut
x + y = 21
x - y = 9
Ada beberapa metode yang bisa digunakan yaitu
a. Metode Grafik
b. Metode Substitusi
c. Metode Eliminasi
d. Metode Gabungan (Eliminasi-Substitusi)
A, Metode Grafik
KIta harus dapat menggambar grafik persamaan linear tersebut pada diagram kartesius
Titik potong dari kedua grafik itulah yang merupakan penyelesaian dari sistem persamaan linear tersebut.yaitu x = 15 dan y = 6 ... biasanya ditulis (15,6)
B . Metode Substitusi
Untuk metode ini kita harus mengubab salah satu persamaan linear kedalam bentuk x atau kedalam bentuk y
x + y = 21 .... pers 1
x - y = 9 ....... pers 2
Misal pers1 yang saya ubah kedalam bentuk x .maka pers1 akan menjadi
y = 21 - x ......pers 3
Selanjutnya kita substitusikan pers 3 ke pers 2
x - y = 9
x - (21 - x) = 9
x - 21 + x = 9
2x = 9 + 21
2x = 30
x = 15 ....
setelah kita dapatkan nilai x... kita tinggal mencari nilai y
substitusikan nilai x ke pers 3
y = 21 - 15
y = 6
maka penyelesaian dari sistem persamaan linear tersebut adalah (15,6)
C Metode Eliminasi
Eliminasi berasal dari kata eliminer yaitu menghilangkan.. Apa yang dihilangkan? yah tentu saja variabel yang kita hilangkan. Maksudnya begini, jika kita hilangkan variabel x maka kita memperoleh nilai y atau sebaliknya jika kita menghilangkan variabel y maka kita memperoleh nilai x.
Menghilangkan variabel x
x+ y = 21 .... pers 1
x - y = 9 ....... pers 2
Karena koefisien kedua variabel x sama., jadi kita tinggal langsung melakukan proses eliminasi
pers 1 di kurang pers 2 maka hasilnya adalah
2y = 12
y = 6
Menghilangkan variabel y
x + y = 21 ....pers 1
x - y = 9 .......pers 2
Karena koefisien kedua variabel y sama. Jadi kita tinggal langsung melakukan proses eliminasi
pers 1 ditambah pers 2 maka hasilnya adalah
2x = 30
x = 15
jadi pernyelesaian dari sistem persamaan linear tersebvut adalah (15,6)
D. Metode Gabungan
Maksud dari metode gabungan ini adalah kita melakukan proses eliminasi terus dilanjutkan proses susbstitusi.
Melakukan proses eliminasi
x + y = 21 .... pers 1
x - y = 9 ....... pers 26
misal eliminasi variabel y maka
2x = 30
x = 15
Selanjutnya melakukan proses substirusi
masukan nilai x yang diperoleh ke dalam salah satu persamaan misalnya pers 1
x + y = 21
15 + y = 21
y = 21 - 15
y = 6
Jadi penyelesaian dari sistem persamaan linear tersebut adalah (15,6)
Sebenarnya masih ada metode lain lagi, tapi akan dipelajari pada jenjang yang lebih tinggi ^^
Semoga bermanfaat
x + y = 21
x - y = 9
Ada beberapa metode yang bisa digunakan yaitu
a. Metode Grafik
b. Metode Substitusi
c. Metode Eliminasi
d. Metode Gabungan (Eliminasi-Substitusi)
A, Metode Grafik
KIta harus dapat menggambar grafik persamaan linear tersebut pada diagram kartesius
Titik potong dari kedua grafik itulah yang merupakan penyelesaian dari sistem persamaan linear tersebut.yaitu x = 15 dan y = 6 ... biasanya ditulis (15,6)
B . Metode Substitusi
Untuk metode ini kita harus mengubab salah satu persamaan linear kedalam bentuk x atau kedalam bentuk y
x + y = 21 .... pers 1
x - y = 9 ....... pers 2
Misal pers1 yang saya ubah kedalam bentuk x .maka pers1 akan menjadi
y = 21 - x ......pers 3
Selanjutnya kita substitusikan pers 3 ke pers 2
x - y = 9
x - (21 - x) = 9
x - 21 + x = 9
2x = 9 + 21
2x = 30
x = 15 ....
setelah kita dapatkan nilai x... kita tinggal mencari nilai y
substitusikan nilai x ke pers 3
y = 21 - 15
y = 6
maka penyelesaian dari sistem persamaan linear tersebut adalah (15,6)
C Metode Eliminasi
Eliminasi berasal dari kata eliminer yaitu menghilangkan.. Apa yang dihilangkan? yah tentu saja variabel yang kita hilangkan. Maksudnya begini, jika kita hilangkan variabel x maka kita memperoleh nilai y atau sebaliknya jika kita menghilangkan variabel y maka kita memperoleh nilai x.
Menghilangkan variabel x
x+ y = 21 .... pers 1
x - y = 9 ....... pers 2
Karena koefisien kedua variabel x sama., jadi kita tinggal langsung melakukan proses eliminasi
pers 1 di kurang pers 2 maka hasilnya adalah
2y = 12
y = 6
Menghilangkan variabel y
x + y = 21 ....pers 1
x - y = 9 .......pers 2
Karena koefisien kedua variabel y sama. Jadi kita tinggal langsung melakukan proses eliminasi
pers 1 ditambah pers 2 maka hasilnya adalah
2x = 30
x = 15
jadi pernyelesaian dari sistem persamaan linear tersebvut adalah (15,6)
D. Metode Gabungan
Maksud dari metode gabungan ini adalah kita melakukan proses eliminasi terus dilanjutkan proses susbstitusi.
Melakukan proses eliminasi
x + y = 21 .... pers 1
x - y = 9 ....... pers 26
misal eliminasi variabel y maka
2x = 30
x = 15
Selanjutnya melakukan proses substirusi
masukan nilai x yang diperoleh ke dalam salah satu persamaan misalnya pers 1
x + y = 21
15 + y = 21
y = 21 - 15
y = 6
Jadi penyelesaian dari sistem persamaan linear tersebut adalah (15,6)
Sebenarnya masih ada metode lain lagi, tapi akan dipelajari pada jenjang yang lebih tinggi ^^
Semoga bermanfaat
Subscribe to:
Posts (Atom)