Soalnya sebagai berikut :
Seekor burung camar laut terbang pada ketinggian 17meter melihat ikan pada jarak 25 m pada kedalaman 3 meter dari permukaan laut. Burung tersebut terbang menukik lurus ke permukaan laut dan menyelam sejauh 3 meter untuk menangkap ikan dan langsung bergerak kembali ke permukaan dan langsung terbang kembali seperti gambar.
Jika diasumsikan permukaan laut sebagai sumbu x, ketinggian sebagai sumbu y, posisi ikan pada koordinat I(0,-3) dan pergerakan burung memenuhi fungsi f(x) = k |x – a| + b dari ketinggian 17 m sampa kedalaman 3 m, dengan a, b, k, dan x adalah bilangan real, tentukanlah nilai a, b dan k.
Penyelesaian
Dari gambar dan keterangan yang soal berikan kita peroleh bentuk segitiga sebagai berikut
Dengan menggunakan persamaan garis lurus
y = mx + c dengan m adalah graduen garis dan c adalah titik potong pada sumbu y dapat kita peroleh persamaan garis lurus dari burung camar ke ikan.
Kita cari terlebih dahulu nilai m nya
Karena melalui titik (0, -3) maka persamaan garisnya adalah
Karena bentuk Bentuk garisnya merupakan nilai mutlak maka harus diberikan tanda mutlak pada x
Dengan melihat kesamaan fungsi yang kita dapat dengan soal y = k|x-a| + b diperoleh
k = 4/3
a = 0 dan b = -3
Semoga berguna
,
Mas blognya sangat membantu, mau tanya juga nih, jika diketahui sin a = t tentukan tg 2a, mohon bantuannya mas, trims
ReplyDeleteterima kasih... saya langsung bahas disini saja...
Deletesin a = t .... dengan identitas sin^2 a + cos ^2 a = 1 kita dapat mencari nilai cos a
cos a = akar (1 - sin^2 a)
cos a = akar ( 1- t^2)
tan 2a = sin 2a / cos 2a
sin 2a = 2sin a cos a = 2t akar(1-t^2)
cos2a = 1-2sin^2 a = 1- 2t^2
maka tan 2a = 2 t akar(1-t&2) / (1 - 2t^2)
kira2 begitu
Terima kasih mas,
Deletesama sama... semoga dapat dipahami
Delete